Skip to content

Load data from external storage

Load data from txt files

Assume we have a WKT file, namely usa-county.tsv, at Path /Download/usa-county.tsv as follows:

POLYGON (..., ...)  Cuming County
POLYGON (..., ...)  Wahkiakum County
POLYGON (..., ...)  De Baca County
POLYGON (..., ...)  Lancaster County

The file may have many other columns.

Use the following code to load the data and create a raw DataFrame:

rawDf = sedona.read.format("csv").option("delimiter", "\t").option("header", "false").load("/Download/usa-county.tsv")
rawDf.createOrReplaceTempView("rawdf")
rawDf.show()
var rawDf = sedona.read.format("csv").option("delimiter", "\t").option("header", "false").load("/Download/usa-county.tsv")
rawDf.createOrReplaceTempView("rawdf")
rawDf.show()
Dataset<Row> rawDf = sedona.read.format("csv").option("delimiter", "\t").option("header", "false").load("/Download/usa-county.tsv")
rawDf.createOrReplaceTempView("rawdf")
rawDf.show()

The output will be like this:

|                 _c0|_c1|_c2|     _c3|  _c4|        _c5|                 _c6|_c7|_c8|  _c9|_c10| _c11|_c12|_c13|      _c14|    _c15|       _c16|        _c17|
+--------------------+---+---+--------+-----+-----------+--------------------+---+---+-----+----+-----+----+----+----------+--------+-----------+------------+
|POLYGON ((-97.019...| 31|039|00835841|31039|     Cuming|       Cuming County| 06| H1|G4020|null| null|null|   A|1477895811|10447360|+41.9158651|-096.7885168|
|POLYGON ((-123.43...| 53|069|01513275|53069|  Wahkiakum|    Wahkiakum County| 06| H1|G4020|null| null|null|   A| 682138871|61658258|+46.2946377|-123.4244583|
|POLYGON ((-104.56...| 35|011|00933054|35011|    De Baca|      De Baca County| 06| H1|G4020|null| null|null|   A|6015539696|29159492|+34.3592729|-104.3686961|
|POLYGON ((-96.910...| 31|109|00835876|31109|  Lancaster|    Lancaster County| 06| H1|G4020| 339|30700|null|   A|2169240202|22877180|+40.7835474|-096.6886584|

Create a Geometry type column

All geometrical operations in Spatial SQL are on Geometry type objects. Therefore, before any kind of queries, you need to create a Geometry type column on a DataFrame.

SELECT ST_GeomFromWKT(_c0) AS countyshape, _c1, _c2

You can select many other attributes to compose this spatialdDf. The output will be something like this:

|                 countyshape|_c1|_c2|     _c3|  _c4|        _c5|                 _c6|_c7|_c8|  _c9|_c10| _c11|_c12|_c13|      _c14|    _c15|       _c16|        _c17|
+--------------------+---+---+--------+-----+-----------+--------------------+---+---+-----+----+-----+----+----+----------+--------+-----------+------------+
|POLYGON ((-97.019...| 31|039|00835841|31039|     Cuming|       Cuming County| 06| H1|G4020|null| null|null|   A|1477895811|10447360|+41.9158651|-096.7885168|
|POLYGON ((-123.43...| 53|069|01513275|53069|  Wahkiakum|    Wahkiakum County| 06| H1|G4020|null| null|null|   A| 682138871|61658258|+46.2946377|-123.4244583|
|POLYGON ((-104.56...| 35|011|00933054|35011|    De Baca|      De Baca County| 06| H1|G4020|null| null|null|   A|6015539696|29159492|+34.3592729|-104.3686961|
|POLYGON ((-96.910...| 31|109|00835876|31109|  Lancaster|    Lancaster County| 06| H1|G4020| 339|30700|null|   A|2169240202|22877180|+40.7835474|-096.6886584|

Although it looks same with the input, but actually the type of column countyshape has been changed to Geometry type.

To verify this, use the following code to print the schema of the DataFrame:

spatialDf.printSchema()

The output will be like this:

root
 |-- countyshape: geometry (nullable = false)
 |-- _c1: string (nullable = true)
 |-- _c2: string (nullable = true)
 |-- _c3: string (nullable = true)
 |-- _c4: string (nullable = true)
 |-- _c5: string (nullable = true)
 |-- _c6: string (nullable = true)
 |-- _c7: string (nullable = true)

Note

Spatial SQL provides lots of functions to create a Geometry column, please read Spatial SQL API.

Working with GeoJSON Data in Sedona

Sedona's GeoJSON data source is designed to handle JSON files that use GeoJSON format for their geometries. This includes SpatioTemporal Asset Catalog (STAC) files, GeoJSON features, GeoJSON feature collections and other variations. The key functionality lies in the way 'geometry' fields are processed: these are specifically read as Sedona's GeometryUDT type, ensuring integration with Sedona's suite of spatial functions.

Key features

  • Broad Support: The reader and writer are versatile, supporting all GeoJSON-formatted files, including STAC files, feature collections, and more.
  • Geometry Transformation: When reading, fields named 'geometry' are automatically converted from GeoJSON format to Sedona's GeometryUDT type and vice versa when writing.

Load MultiLine GeoJSON FeatureCollection

Suppose we have a GeoJSON FeatureCollection file as follows. This entire file is considered as a single GeoJSON FeatureCollection object. Multiline format is preferable for scenarios where files need to be human-readable or manually edited.

{ "type": "FeatureCollection",
    "features": [
      { "type": "Feature",
        "geometry": {"type": "Point", "coordinates": [102.0, 0.5]},
        "properties": {"prop0": "value0"}
        },
      { "type": "Feature",
        "geometry": {
          "type": "LineString",
          "coordinates": [
            [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0]
            ]
          },
        "properties": {
          "prop0": "value1",
          "prop1": 0.0
          }
        },
      { "type": "Feature",
         "geometry": {
           "type": "Polygon",
           "coordinates": [
             [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0],
               [100.0, 1.0], [100.0, 0.0] ]
             ]
         },
         "properties": {
           "prop0": "value2",
           "prop1": {"this": "that"}
           }
         }
       ]
}

Set the multiLine option to True to read multiline GeoJSON files.

df = sedona.read.format("geojson").option("multiLine", "true").load("PATH/TO/MYFILE.json")
 .selectExpr("explode(features) as features") # Explode the envelope to get one feature per row.
 .select("features.*") # Unpack the features struct.
 .withColumn("prop0", f.expr("properties['prop0']")).drop("properties").drop("type")

df.show()
df.printSchema()
val df = sedona.read.format("geojson").option("multiLine", "true").load("PATH/TO/MYFILE.json")
val parsedDf = df.selectExpr("explode(features) as features").select("features.*")
        .withColumn("prop0", expr("properties['prop0']")).drop("properties").drop("type")

parsedDf.show()
parsedDf.printSchema()
Dataset<Row> df = sedona.read.format("geojson").option("multiLine", "true").load("PATH/TO/MYFILE.json")
 .selectExpr("explode(features) as features") // Explode the envelope to get one feature per row.
 .select("features.*") // Unpack the features struct.
 .withColumn("prop0", expr("properties['prop0']")).drop("properties").drop("type")

df.show();
df.printSchema();

The output is as follows:

+--------------------+------+
|            geometry| prop0|
+--------------------+------+
|     POINT (102 0.5)|value0|
|LINESTRING (102 0...|value1|
|POLYGON ((100 0, ...|value2|
+--------------------+------+

root
 |-- geometry: geometry (nullable = false)
 |-- prop0: string (nullable = true)

Load Single Line GeoJSON Features

Suppose we have a single-line GeoJSON Features dataset as follows. Each line is a single GeoJSON Feature. This format is efficient for processing large datasets where each line is a separate, self-contained GeoJSON object.

{"type":"Feature","geometry":{"type":"Point","coordinates":[102.0,0.5]},"properties":{"prop0":"value0"}}
{"type":"Feature","geometry":{"type":"LineString","coordinates":[[102.0,0.0],[103.0,1.0],[104.0,0.0],[105.0,1.0]]},"properties":{"prop0":"value1"}}
{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[100.0,0.0],[101.0,0.0],[101.0,1.0],[100.0,1.0],[100.0,0.0]]]},"properties":{"prop0":"value2"}}

By default, when option is not specified, WherobotsDB reads a GeoJSON file as a single line GeoJSON.

df = sedona.read.format("geojson").load("PATH/TO/MYFILE.json")
   .withColumn("prop0", f.expr("properties['prop0']")).drop("properties").drop("type")

df.show()
df.printSchema()
val df = sedona.read.format("geojson").load("PATH/TO/MYFILE.json")
   .withColumn("prop0", expr("properties['prop0']")).drop("properties").drop("type")

df.show()
df.printSchema()
Dataset<Row> df = sedona.read.format("geojson").load("PATH/TO/MYFILE.json")
   .withColumn("prop0", expr("properties['prop0']")).drop("properties").drop("type")

df.show()
df.printSchema()

The output is as follows:

+--------------------+------+
|            geometry| prop0|
+--------------------+------+
|     POINT (102 0.5)|value0|
|LINESTRING (102 0...|value1|
|POLYGON ((100 0, ...|value2|
+--------------------+------+

root
 |-- geometry: geometry (nullable = false)
 |-- prop0: string (nullable = true)

Load Shapefile

from sedona.core.formatMapper.shapefileParser import ShapefileReader
from sedona.utils.adapter import Adapter

ShapefileReader.readToGeometryRDD(sc, shape_file_location)
spatialDf = Adapter.toDf(spatialRDD, sedona)
val shapefileInputLocation="/Download/myshapefile"
val spatialRDD = ShapefileReader.readToGeometryRDD(sedona.sparkContext, shapefileInputLocation)
var spatialDf = Adapter.toDf(spatialRDD, sedona)
String shapefileInputLocation="/Download/myshapefile"
SpatialRDD spatialRDD = ShapefileReader.readToGeometryRDD(sedona.sparkContext, shapefileInputLocation)
Dataset<Row> spatialDf = Adapter.toDf(spatialRDD, sedona)

Note

The file extensions of .shp, .shx, .dbf must be in lowercase. Assume you have a shape file called myShapefile, the file structure should be like this:

- shapefile1
- shapefile2
- myshapefile
 - myshapefile.shp
 - myshapefile.shx
 - myshapefile.dbf
 - myshapefile...
 - ...

If the file you are reading contains non-ASCII characters you'll need to explicitly set the encoding via sedona.global.charset system property before creating your Spark context.

Example:

System.setProperty("sedona.global.charset", "utf8")

Load GeoParquet

WherobotsDB natively supports loading GeoParquet file. WherobotsDB will infer geometry fields using the "geo" metadata in GeoParquet files.

df = sedona.read.format("geoparquet").load(geoparquetdatalocation1)
df.printSchema()
val df = sedona.read.format("geoparquet").load(geoparquetdatalocation1)
df.printSchema()
Dataset<Row> df = sedona.read.format("geoparquet").load(geoparquetdatalocation1)
df.printSchema()

The output will be as follows:

root
 |-- pop_est: long (nullable = true)
 |-- continent: string (nullable = true)
 |-- name: string (nullable = true)
 |-- iso_a3: string (nullable = true)
 |-- gdp_md_est: double (nullable = true)
 |-- geometry: geometry (nullable = true)

WherobotsDB supports spatial predicate push-down for GeoParquet files, please refer to the Spatial SQL API documentation for details.

GeoParquet file reader can also be used to read legacy Parquet files written by Apache Sedona 1.3.1-incubating or earlier. Please refer to Reading Legacy Parquet Files for details.

Inspect GeoParquet metadata

WherobotsDB provides a Spark SQL data source "geoparquet.metadata" for inspecting GeoParquet metadata. The resulting dataframe contains the "geo" metadata for each input file.

df = sedona.read.format("geoparquet.metadata").load(geoparquetdatalocation1)
df.printSchema()
val df = sedona.read.format("geoparquet.metadata").load(geoparquetdatalocation1)
df.printSchema()
Dataset<Row> df = sedona.read.format("geoparquet.metadata").load(geoparquetdatalocation1)
df.printSchema()

The output will be as follows:

root
 |-- path: string (nullable = true)
 |-- version: string (nullable = true)
 |-- primary_column: string (nullable = true)
 |-- columns: map (nullable = true)
 |    |-- key: string
 |    |-- value: struct (valueContainsNull = true)
 |    |    |-- encoding: string (nullable = true)
 |    |    |-- geometry_types: array (nullable = true)
 |    |    |    |-- element: string (containsNull = true)
 |    |    |-- bbox: array (nullable = true)
 |    |    |    |-- element: double (containsNull = true)
 |    |    |-- crs: string (nullable = true)

If the input Parquet file does not have GeoParquet metadata, the values of version, primary_column and columns fields of the resulting dataframe will be null.

Load data from JDBC data sources (PostGIS)

The 'query' option in Spark SQL's JDBC data source can be used to convert geometry columns to a format that WherobotsDB can interpret. This should work for most spatial JDBC data sources. For Postgis there is no need to add a query to convert geometry types since it's already using EWKB as it's wire format.

# For any JDBC data source, including Postgis.
df = (sedona.read.format("jdbc")
    # Other options.
    .option("query", "SELECT id, ST_AsBinary(geom) as geom FROM my_table")
    .load()
    .withColumn("geom", f.expr("ST_GeomFromWKB(geom)")))

# This is a simplified version that works for Postgis.
df = (sedona.read.format("jdbc")
    # Other options.
    .option("dbtable", "my_table")
    .load()
    .withColumn("geom", f.expr("ST_GeomFromWKB(geom)")))
// For any JDBC data source, including Postgis.
val df = sedona.read.format("jdbc")
    // Other options.
    .option("query", "SELECT id, ST_AsBinary(geom) as geom FROM my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))

// This is a simplified version that works for Postgis.
val df = sedona.read.format("jdbc")
    // Other options.
    .option("dbtable", "my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))
// For any JDBC data source, including Postgis.
Dataset<Row> df = sedona.read().format("jdbc")
    // Other options.
    .option("query", "SELECT id, ST_AsBinary(geom) as geom FROM my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))

// This is a simplified version that works for Postgis.
Dataset<Row> df = sedona.read().format("jdbc")
    // Other options.
    .option("dbtable", "my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))

Load data from GeoPandas file reader

WherobotsDB Python has implemented serializers and deserializers which allows to convert WherobotsDB Geometry objects into Shapely BaseGeometry objects. Based on that it is possible to load the data with geopandas from file and create Sedona DataFrame based on GeoDataFrame object.

import geopandas as gpd

gdf = gpd.read_file("<some path>.shp")
df = sedona.createDataFrame(gdf)

Load data from Python Shapely

The following Shapely geometry types are supported:

  • Point
  • MultiPoint
  • LineString
  • MultiLinestring
  • Polygon
  • MultiPolygon

Create a schema

To create Spark DataFrame from Shapely objects, you need to first create a schema. Please use GeometryType from sedona.sql.types module.

from pyspark.sql.types import IntegerType, StructField, StructType
from sedona.sql.types import GeometryType

schema = StructType(
    [
        StructField("id", IntegerType(), False),
        StructField("geom", GeometryType(), False)
    ]
)

Create Shapely geometries

Now you can create Shapely geometries and convert them to a Sedona DataFrame.

from shapely.geometry import Point

data = [
    [1, Point(21.0, 52.0)],
    [1, Point(23.0, 42.0)],
    [1, Point(26.0, 32.0)]
]

gdf = sedona.createDataFrame(
    data,
    schema
)

gdf.show()
+---+-------------+
| id|         geom|
+---+-------------+
|  1|POINT (21 52)|
|  1|POINT (23 42)|
|  1|POINT (26 32)|
+---+-------------+
from shapely.geometry import MultiPoint

data = [
    [1, MultiPoint([[19.511463, 51.765158], [19.446408, 51.779752]])]
]

gdf = sedona.createDataFrame(
    data,
    schema
).show(1, False)
+---+---------------------------------------------------------+
|id |geom                                                     |
+---+---------------------------------------------------------+
|1  |MULTIPOINT ((19.511463 51.765158), (19.446408 51.779752))|
+---+---------------------------------------------------------+
from shapely.geometry import LineString

line = [(40, 40), (30, 30), (40, 20), (30, 10)]

data = [
    [1, LineString(line)]
]

gdf = sedona.createDataFrame(
    data,
    schema
)

gdf.show(1, False)
+---+--------------------------------+
|id |geom                            |
+---+--------------------------------+
|1  |LINESTRING (10 10, 20 20, 10 40)|
+---+--------------------------------+
from shapely.geometry import MultiLineString

line1 = [(10, 10), (20, 20), (10, 40)]
line2 = [(40, 40), (30, 30), (40, 20), (30, 10)]

data = [
    [1, MultiLineString([line1, line2])]
]

gdf = sedona.createDataFrame(
    data,
    schema
)

gdf.show(1, False)
+---+---------------------------------------------------------------------+
|id |geom                                                                 |
+---+---------------------------------------------------------------------+
|1  |MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))|
+---+---------------------------------------------------------------------+
from shapely.geometry import Polygon

polygon = Polygon(
    [
         [19.51121, 51.76426],
         [19.51056, 51.76583],
         [19.51216, 51.76599],
         [19.51280, 51.76448],
         [19.51121, 51.76426]
    ]
)

data = [
    [1, polygon]
]

gdf = sedona.createDataFrame(
    data,
    schema
)

gdf.show(1, False)
+---+--------------------------------------------------------------------------------------------------------+
|id |geom                                                                                                    |
+---+--------------------------------------------------------------------------------------------------------+
|1  |POLYGON ((19.51121 51.76426, 19.51056 51.76583, 19.51216 51.76599, 19.5128 51.76448, 19.51121 51.76426))|
+---+--------------------------------------------------------------------------------------------------------+
from shapely.geometry import MultiPolygon

exterior_p1 = [(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)]
interior_p1 = [(1, 1), (1, 1.5), (1.5, 1.5), (1.5, 1), (1, 1)]

exterior_p2 = [(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]

polygons = [
    Polygon(exterior_p1, [interior_p1]),
    Polygon(exterior_p2)
]

data = [
    [1, MultiPolygon(polygons)]
]

gdf = sedona.createDataFrame(
    data,
    schema
)

gdf.show(1, False)
+---+----------------------------------------------------------------------------------------------------------+
|id |geom                                                                                                      |
+---+----------------------------------------------------------------------------------------------------------+
|1  |MULTIPOLYGON (((0 0, 0 2, 2 2, 2 0, 0 0), (1 1, 1.5 1, 1.5 1.5, 1 1.5, 1 1)), ((0 0, 0 1, 1 1, 1 0, 0 0)))|
+---+----------------------------------------------------------------------------------------------------------+

Confirm the DataFrame structure

gdf.printSchema()
root
 |-- id: integer (nullable = false)
 |-- geom: geometry (nullable = false)

Load data from Snowflake

Tables created in Snowflake can be loaded on to Sedona Dataframes using Sedona. Once the data is loaded, it can be processed using the extensive catalog and efficient computation of WherobotsDB.

In order to enable bi-directional communication between Spark and Snowflake, a map of configuration parameters must be passed as options to the SedonaContext object.

The configuration parameters include connection and context options. Details on the possible values of these options can be found here.

Load entire table from Snowflake

The dbtable option can be used to load the contents of the entire table from Snowflake to a Sedona Dataframe, effectively running a SELECT * FROM table query.

# snowflake_url is https://<accountIdentifier>.snowflakecomputing.com
sfOptions = {"sfUrl": snowflake_url, "sfUser": username, "sfPassword" : password, "sfDatabase": database, "sfSchema": schema}

# source table name in Snowflake
src_table_name = "<SOURCE_TABLE_NAME>"

df = sedona.read.format(SNOWFLAKE_SOURCE_NAME)\
    .options(**sfOptions)\
    .option("dbtable", src_table_name)\
    .load()
df.show()
df.printSchema()
// snowflakeUrl is https://<accountIdentifier>.snowflakecomputing.com
val sfOptions = Map("sfUrl" -> snowflakeUrl, "sfUser" -> username, "sfPassword" -> password, "sfDatabase" -> database, "sfSchema" -> schema)

// source table name in Snowflake
val src_table_name = "<SOURCE_TABLE_NAME>"

val df = sedona.read.format(SNOWFLAKE_SOURCE_NAME)
                    .options(sfOptions)
                    .option("dbtable", src_table_name)
                    .load()
df.show()
df.printSchema()
import java.util.HashMap;
HashMap<String, String> sfOptions = new HashMap<>();
sfOptions.put("sfUrl", snowflakeUrl); // snowflakeUrl is https://<accountIdentifier>.snowflakecomputing.com
sfOptions.put("sfUser", username);
sfOptions.put("sfPassword", password);
sfOptions.put("sfDatabase", database);
sfOptions.put("sfSchema", schema);

String src_table_name = "<SOURCE_TABLE_NAME>";
Dataset<Row> df = sedona.read.format(SNOWFLAKE_SOURCE_NAME)
                    .options(sfOptions)
                    .option("dbtable", src_table_name)
                    .load();
df.show();
df.printSchema();

Load query results from Snowflake

The query option can be used to load the results of a query. Snowflake employs query and predicate pushdown which is enabled by default.

If you wish to disable pushdown, the autopushdown option can be used with value as off.

query = "SELECT GEOM, CITY_NAME FROM " + src_table_name + " WHERE CITY_NAME = 'Seattle'" #custom query to run
df_query = sedona.read.format(SNOWFLAKE_SOURCE_NAME)\
            .options(**sfOptions)\
            .option("query", query)\
            .load()
df.show()
df.printSchema()
val query = s"SELECT GEOM, CITY_NAME FROM $src_table_name WHERE CITY_NAME = 'Seattle'"
val df_query = sedona.read.format(SNOWFLAKE_SOURCE_NAME)
            .options(sfOptions)
            .option("query", query)
            .load()
df.show()
df.printSchema()
import java.util.HashMap;
String query = "SELECT GEOM, CITY_NAME FROM " + src_table_name + " WHERE CITY_NAME = 'Seattle'"
Dataset<Row> df_query = sedona.read.format(SNOWFLAKE_SOURCE_NAME)
            .options(sfOptions)
            .option("query", query)
            .load();
df.show();
df.printSchema();

Load data from AWS RDS PostGIS

Tables created in a AWS RDS PostGIS (PostgreSQL) instance can be imported on to Sedona Dataframes using Sedona. Once the data is loaded, it can be processed using the extensive catalog and efficient computation of WherobotsDB.

Data can be loaded on to a Sedona Dataframe using the load() function. A map of configuration and context options must be passed to establish connection with the RDS instance.

If you're unable to establish connection with the RDS instance, double check if the instance is accessible by the server running this code. For more information on intra or inter VPC connection with the RDS instance, consult here.

Load entire table from RDS

The dbtable option can be used to load the contents of the entire table from RDS to a Sedona Dataframe, effectively running a SELECT * FROM table query.

url = '<URL>' #jdbc:postgresql://ENDPOINT/DATABASE_NAME
driver = 'org.postgresql.Driver'
user = '<USERNAME>'
password = '<PASSWORD>'
options = {"url": url, "driver": driver, "user": user, "password": password}
src_table_name = 'city_tbl_geom'
df = sedona.read.format("jdbc")
    .options(**options)
    .option('dbtable', src_table_name)
    .load()
val url = "<URL>"//jdbc:postgresql://ENDPOINT/DATABASE_NAME
val driver = "org.postgresql.Driver"
val user = "<USERNAME>"
val password = "<PASSWORD>"
val options = Map("url" -> url, "user" -> user, "password" -> password, "driver" -> driver)
val src_table_name = "city_tbl_geom"
val df = sedona.read.format("jdbc")
                .options(options)
                .option("dbtable", src_table_name)
                .load()
import java.util.HashMap;
HashMap<String, String> options = new HashMap<>();
options.put("url", url); // url is jdbc:postgresql://ENDPOINT/DATABASE_NAME
options.put("user", username);
options.put("password", password);
options.put("driver", "org.postgresql.Driver");
String src_table_name = "<SOURCE_TABLE_NAME>";
Dataset<Row> df = sedona.read.format("jdbc")
                            .options(options)
                            .option("dbtable", src_table_name)
                            .load();
df.show();
df.printSchema();

Load query results from RDS

The query option can be used to load the results of a query.

url = '<URL>' # jdbc:postgresql://ENDPOINT/DATABASE_NAME
driver = 'org.postgresql.Driver'
user = '<USERNAME>'
password = '<PASSWORD>'
options = {"url": url, "driver": driver, "user": user, "password": password}
src_table_name = 'city_tbl_geom'
query = "SELECT GEOM, CITY_NAME FROM " + src_table_name + " WHERE CITY_NAME = 'Seattle'" #custom query to run
df = sedona.read.format("jdbc")\
    .options(**options)\
    .option('query', query)\
    .load()
val url = "<URL>" // jdbc:postgresql://ENDPOINT/DATABASE_NAME
val driver = "org.postgresql.Driver"
val user = "<USERNAME>"
val password = "<PASSWORD>"
val options = Map("url" -> url, "user" -> user, "password" -> password, "driver" -> driver)
val src_table_name = "city_tbl_geom"
val query = "SELECT GEOM, CITY_NAME FROM " + src_table_name + " WHERE CITY_NAME = 'Seattle'" //Custom query to run
val df = sedona.read.format("jdbc")
                .options(options)
                .option("query", query)
                .load()
import java.util.HashMap;
HashMap<String, String> options = new HashMap<>();
options.put("url", url); // jdbc:postgresql://ENDPOINT/DATABASE_NAME
options.put("user", username);
options.put("password", password);
options.put("driver", "org.postgresql.Driver");
String src_table_name = "<SOURCE_TABLE_NAME>";
String query = "SELECT GEOM, CITY_NAME FROM " + src_table_name + " WHERE CITY_NAME = 'Seattle'"; //Custom query to run
Dataset<Row> df = sedona.read.format("jdbc")
                            .options(options)
                            .option("query", query)
                            .load();
df.show();
df.printSchema();

Last update: May 20, 2024 07:48:29