Raster Visualizer
Sedona offers some APIs to aid in easy visualization of a raster object.
Image-based visualization¶
Sedona offers APIs to visualize a raster in an image form. This API only works for rasters with byte data, and bands <= 4 (Grayscale - RGBA). You can check the data type of an existing raster by using RS_BandPixelType or create your own raster by passing 'B' while using RS_MakeEmptyRaster.
RS_AsBase64¶
Introduction: Returns a base64 encoded string of the given raster. If the datatype is integral then this function internally takes the first 4 bands as RGBA, and converts them to the PNG format, finally produces a base64 string. When the datatype is not integral, the function converts the raster to TIFF format, and then generates a base64 string. To visualize other bands, please use it together with RS_Band
. You can take the resulting base64 string in an online viewer to check how the image looks like.
Warning
This is not recommended for large files.
Format: RS_AsBase64(raster: Raster)
SQL example:
SELECT RS_AsBase64(raster) from rasters
Output:
iVBORw0KGgoAAAA...
RS_AsImage¶
Introduction: Returns a HTML that when rendered using an HTML viewer or via a Jupyter Notebook, displays the raster as a square image of side length imageWidth
. Optionally, an imageWidth parameter can be passed to RS_AsImage in order to increase the size of the rendered image (default: 200).
Format: RS_AsImage(raster: Raster, imageWidth: Integer = 200)
SQL example:
SELECT RS_AsImage(raster, 500) from rasters
SELECT RS_AsImage(raster) from rasters
Output:
"<img src=\"\" width=\"200\" />";
Tip
RS_AsImage can be paired with SedonaUtils.display_image(df) wrapper inside a Jupyter notebook to directly print the raster as an image in the output, where the 'df' parameter is the dataframe containing the HTML data provided by RS_AsImage
Example:
df = sedona.read.format('binaryFile').load(DATA_DIR + 'raster.tiff').selectExpr(\"RS_FromGeoTiff(content) as raster\")
htmlDF = df.selectExpr(\"RS_AsImage(raster, 500) as raster_image\")
SedonaUtils.display_image(htmlDF)
Text-based visualization¶
RS_AsMatrix¶
Introduction: Returns a string representation of a specified raster band, formatted as a 2D matrix. It converts all raster values to doubles and allows customization of the number of decimal places. The function primarily requires a raster input and optionally accepts two parameters: band (defaulting to 1, with 1-based indexing) and postDecimalPrecision (defaulting to 6).
Format:
RS_AsMatrix(raster: Raster, band: Integer = 1, postDecimalPrecision: Integer = 6)
Note
-
Band Selection: Throws an IllegalArgumentException if the specified band is not present in the raster.
-
Value Type: For rasters with integral values, the postDecimalPrecision is ignored, resulting in integer output.
-
Output Display: When using
show()
to display the matrix, escape sequences may appear for special characters. To correctly view the matrix as intended, use the following examples.
print("\n".join(df.selectExpr("RS_AsMatrix(rast)").sample(0.5).collect()))
println(df.selectExpr("RS_AsMatrix(rast)").sample(0.5).collect().mkString("\n"))
System.out.println(String.join("\n", df.selectExpr("RS_AsMatrix(rast)").sample(0.5).collect()))
The sample()
function in the examples is used to reduce the amount of data sent to collect()
, but you can also use filter()
if it's more appropriate for your data.
SQL example:
val inputDf = Seq(Seq(1, 3.333333, 4, 0.0001, 2.2222, 9, 10, 11.11111111, 3, 4, 5, 6)).toDF("band")
print(inputDf.selectExpr("RS_AsMatrix(RS_AddBandFromArray(RS_MakeEmptyRaster(1, 'd', 4, 3, 0, 0, 1, -1, 0, 0, 0), band, 1, 0))").sample(0.5).collect()(0))
Output:
| 1.00000 3.33333 4.00000 0.00010|
| 2.22220 9.00000 10.00000 11.11111|
| 3.00000 4.00000 5.00000 6.00000|
SQL example:
val inputDf = Seq(Seq(1, 3, 4, 0, 2, 9, 10, 11, 3, 4, 5, 6)).toDF("band")
print(inputDf.selectExpr("RS_AsMatrix(RS_AddBandFromArray(RS_MakeEmptyRaster(1, 'i', 4, 3, 0, 0, 1, -1, 0, 0, 0), band, 1, 0))").sample(0.5).collect()(0))
Output:
| 1 3 4 0|
| 2 9 10 11|
| 3 4 5 6|