inference
            wherobots.inference
    Public API for wherobots.inference.
            ModelMetadata
  
      dataclass
  
    Loads and parses Machine Learning Model Metadata JSON.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                model_meta_path
             | 
            
                  str
             | 
            
               Path or S3 URI to the model metadata JSON file.  | 
            required | 
Raises:
| Type | Description | 
|---|---|
                  ValueError
             | 
            
               Shape mismatch error if the length of the class_map differs from the shape of the result.  | 
          
                  ValueError
             | 
            
               Only MLM metadata that define statistics per band and norm_by_channels are supported.  | 
          
            get_mlm_properties(model_meta_uri)
    Reads and parses a model metadata JSON file from S3.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                model_meta_uri
             | 
            
                  str
             | 
            
               The S3 URI for the model metadata JSON file.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  MLModelProperties
             | 
            
               pystac.STACObject: The parsed model metadata conforming to the MLM Extension.  | 
          
            create_object_detection_udfs(batch_size, sedona)
    Create and register UDFs for object detection tasks.
Registers SQL functions for RS_DETECT_BBOXES and RS_FILTER_BOX_CONFIDENCE and returns corresponding functions.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                batch_size
             | 
            
                  int
             | 
            
               The number of samples to include in each batch.  | 
            required | 
                sedona
             | 
            
                  SedonaContext
             | 
            
               The current Sedona context.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  tuple[Callable, Callable]
             | 
            
               Tuple[Callable, Callable]: A tuple of functions configured for object detection.  | 
          
            create_semantic_segmentation_udfs(batch_size, sedona)
    Create and register SQL functions for semantic segmentation tasks.
Registers SQL function as RS_SEGMENT and returns a corresponding function.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                batch_size
             | 
            
                  int
             | 
            
               The number of samples to include in each batch.  | 
            required | 
                sedona
             | 
            
                  SedonaContext
             | 
            
               The current Sedona context.  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
Callable |             
                  Callable
             | 
            
               A function configured for semantic segmentation.  | 
          
            create_single_label_classification_udfs(batch_size, sedona)
    Create and register SQL Functions for single-label classification tasks.
Registers SQL function as RS_CLASSIFY RS_MAX_CONFIDENCE and returns corresponding functions.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                batch_size
             | 
            
                  int
             | 
            
               The number of samples to include in each batch.  | 
            required | 
                sedona
             | 
            
                  SedonaContext
             | 
            
               The current Sedona context.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  Callable
             | 
            
               Tuple[Callable, Callable]: A tuple of pandas UDFs configured for single-label  | 
          
                  Callable
             | 
            
               classification tasks, [RS_CLASSIFY, RS_MAX_CONFIDENCE].  | 
          
            show_detections(df, geometry_column=None, geometry_crs='EPSG:4326', confidence_threshold=0.05, plot_geoms=True, side_by_side=True)
    Plot raster images with detected object geometries overlaid.
This function handles both Pandas and Wherobots DataFrames containing geometries, automatically detecting the raster column. It is compatible with dataframes returned from a SQL inference function. Exploded dataframes are not supported.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                df
             | 
            
                  DataFrame | DataFrame
             | 
            
               Pandas or Wherobots DataFrame containing raster data and detection results  | 
            required | 
                geometry_column
             | 
            
                  str
             | 
            
               Column name containing WKT geometries (if None, automatically detected)  | 
            
                  None
             | 
          
                geometry_crs
             | 
            
                  str
             | 
            
               Coordinate reference system of the geometries (default: EPSG:4326)  | 
            
                  'EPSG:4326'
             | 
          
                confidence_threshold
             | 
            
                  float
             | 
            
               Minimum confidence score for displaying detections  | 
            
                  0.05
             | 
          
                plot_geoms
             | 
            
                  bool
             | 
            
               Whether to overlay geometries on the images  | 
            
                  True
             | 
          
                side_by_side
             | 
            
                  bool
             | 
            
               Whether to show original and detection images side by side  | 
            
                  True
             | 
          
Raises:
| Type | Description | 
|---|---|
                  ValueError
             | 
            
               If the DataFrame is empty or required columns cannot be found  |